Math review (10 points)

In this question, you will review some math skills that we will use regularly during the Signals \& Systems lectures.
a) Complex numbers (Reading: ow page 71; Review: 18.01, 18.03 notes)

Express each of the following complex numbers in polar form, $z=r e^{j \theta}$. Plot each one as a vector in the complex plane. On your plot, indicate the magnitude r and angle θ of each vector.
(i) $z_{1}=1+j \sqrt{3}$
(ii) $z_{2}=\frac{e^{j \pi / 3}-1}{1+j \sqrt{3}}$
(ii) $z_{3}=(1+j)^{5}$
b) Function manipulation (Reading: ow 1.1, 1.2, 1.4).
(from P1.21 in ow) A signal $x(t)$ is shown in the figure below. Sketch and label carefully each of the following signals. Note that in our notation below, $\sigma(t)$ is the unit step function and $\delta(t)$ is the unit impulse function.

Figure 1: Figure P1.21 (Oppenheim and Willsky).
(i) $x(t-1)$
(ii) $x(2-t)$
(iii) $x(2 t+1)$
(iv) $[x(t)+x(-t)] \sigma(t)$
(v) $x(t)\left[\delta\left(t+\frac{3}{2}\right)-\delta\left(t-\frac{3}{2}\right)\right]$
c) Linear differential equations (Review: 18.03 notes)
(i) Compute the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]
$$

(ii) Using your results from (i), solve the following initial value problem to compute $x_{1}(t)$ and $x_{2}(t), t \geq 0$:

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
x_{1}(0) & =1 \\
x_{2}(0) & =0
\end{aligned}
$$

